Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Standardization of microfluidic cell cultures using integrated organic photodiodes and electrode arrays.

Identifieur interne : 000380 ( Main/Exploration ); précédent : 000379; suivant : 000381

Standardization of microfluidic cell cultures using integrated organic photodiodes and electrode arrays.

Auteurs : RBID : pubmed:23254868

English descriptors

Abstract

Nanotechnology provides the tools to develop novel biosensors with improved performance, including sensitivity and response time that can be readily integrated into diagnostic devices. We have developed a miniaturized cell analysis platform to advance microfluidic cell cultures by combining two complementary, label-free and non-invasive cell analysis methods for the long-term monitoring of dynamic cell behavior. The novel dual-parameter cell-on-a-chip detects light scattering from adherent cells to provide information on cell numbers and intracellular granularity, while simultaneously performing impedance spectroscopy to monitor cell adhesion and cell-cell interaction. In the present work we have integrated spray-coated organic photodiode arrays with a lab-on-a-chip containing embedded interdigitated electrode structures to improve assay reproducibility, reliability and accuracy. We successfully demonstrate that the complementary cell chip technology can accurately detect cell numbers, clarify misleading results during cell-substance interaction assays, as well as the cytotoxicity screening of drug substances. The ability to precisely determine cell numbers within minutes constitutes a major step towards standardization.

DOI: 10.1039/c2lc40965h
PubMed: 23254868

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Standardization of microfluidic cell cultures using integrated organic photodiodes and electrode arrays.</title>
<author>
<name sortKey="Charwat, Verena" uniqKey="Charwat V">Verena Charwat</name>
<affiliation wicri:level="1">
<nlm:affiliation>AIT Austrian Institute of Technology GmbH, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>AIT Austrian Institute of Technology GmbH, Vienna</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Purtscher, Michaela" uniqKey="Purtscher M">Michaela Purtscher</name>
</author>
<author>
<name sortKey="Tedde, Sandro F" uniqKey="Tedde S">Sandro F Tedde</name>
</author>
<author>
<name sortKey="Hayden, Oliver" uniqKey="Hayden O">Oliver Hayden</name>
</author>
<author>
<name sortKey="Ertl, Peter" uniqKey="Ertl P">Peter Ertl</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2013">2013</date>
<idno type="doi">10.1039/c2lc40965h</idno>
<idno type="RBID">pubmed:23254868</idno>
<idno type="pmid">23254868</idno>
<idno type="wicri:Area/Main/Corpus">000888</idno>
<idno type="wicri:Area/Main/Curation">000888</idno>
<idno type="wicri:Area/Main/Exploration">000380</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Adhesion</term>
<term>Cell Culture Techniques (standards)</term>
<term>Cell Line</term>
<term>Cell Survival</term>
<term>Dielectric Spectroscopy</term>
<term>Dimethylpolysiloxanes (chemistry)</term>
<term>Electrodes</term>
<term>HeLa Cells</term>
<term>Human Umbilical Vein Endothelial Cells</term>
<term>Humans</term>
<term>Jurkat Cells</term>
<term>Light</term>
<term>Microfluidic Analytical Techniques (instrumentation)</term>
<term>Microfluidic Analytical Techniques (methods)</term>
<term>Microfluidic Analytical Techniques (standards)</term>
<term>Nanotechnology</term>
<term>Scattering, Radiation</term>
<term>Tin Compounds (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Dimethylpolysiloxanes</term>
<term>Tin Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Microfluidic Analytical Techniques</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Microfluidic Analytical Techniques</term>
</keywords>
<keywords scheme="MESH" qualifier="standards" xml:lang="en">
<term>Cell Culture Techniques</term>
<term>Microfluidic Analytical Techniques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Adhesion</term>
<term>Cell Line</term>
<term>Cell Survival</term>
<term>Dielectric Spectroscopy</term>
<term>Electrodes</term>
<term>HeLa Cells</term>
<term>Human Umbilical Vein Endothelial Cells</term>
<term>Humans</term>
<term>Jurkat Cells</term>
<term>Light</term>
<term>Nanotechnology</term>
<term>Scattering, Radiation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nanotechnology provides the tools to develop novel biosensors with improved performance, including sensitivity and response time that can be readily integrated into diagnostic devices. We have developed a miniaturized cell analysis platform to advance microfluidic cell cultures by combining two complementary, label-free and non-invasive cell analysis methods for the long-term monitoring of dynamic cell behavior. The novel dual-parameter cell-on-a-chip detects light scattering from adherent cells to provide information on cell numbers and intracellular granularity, while simultaneously performing impedance spectroscopy to monitor cell adhesion and cell-cell interaction. In the present work we have integrated spray-coated organic photodiode arrays with a lab-on-a-chip containing embedded interdigitated electrode structures to improve assay reproducibility, reliability and accuracy. We successfully demonstrate that the complementary cell chip technology can accurately detect cell numbers, clarify misleading results during cell-substance interaction assays, as well as the cytotoxicity screening of drug substances. The ability to precisely determine cell numbers within minutes constitutes a major step towards standardization.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23254868</PMID>
<DateCreated>
<Year>2013</Year>
<Month>02</Month>
<Day>06</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>14</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1473-0189</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2013</Year>
<Month>Mar</Month>
<Day>7</Day>
</PubDate>
</JournalIssue>
<Title>Lab on a chip</Title>
<ISOAbbreviation>Lab Chip</ISOAbbreviation>
</Journal>
<ArticleTitle>Standardization of microfluidic cell cultures using integrated organic photodiodes and electrode arrays.</ArticleTitle>
<Pagination>
<MedlinePgn>785-97</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c2lc40965h</ELocationID>
<Abstract>
<AbstractText>Nanotechnology provides the tools to develop novel biosensors with improved performance, including sensitivity and response time that can be readily integrated into diagnostic devices. We have developed a miniaturized cell analysis platform to advance microfluidic cell cultures by combining two complementary, label-free and non-invasive cell analysis methods for the long-term monitoring of dynamic cell behavior. The novel dual-parameter cell-on-a-chip detects light scattering from adherent cells to provide information on cell numbers and intracellular granularity, while simultaneously performing impedance spectroscopy to monitor cell adhesion and cell-cell interaction. In the present work we have integrated spray-coated organic photodiode arrays with a lab-on-a-chip containing embedded interdigitated electrode structures to improve assay reproducibility, reliability and accuracy. We successfully demonstrate that the complementary cell chip technology can accurately detect cell numbers, clarify misleading results during cell-substance interaction assays, as well as the cytotoxicity screening of drug substances. The ability to precisely determine cell numbers within minutes constitutes a major step towards standardization.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Charwat</LastName>
<ForeName>Verena</ForeName>
<Initials>V</Initials>
<Affiliation>AIT Austrian Institute of Technology GmbH, Vienna, Austria.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Purtscher</LastName>
<ForeName>Michaela</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tedde</LastName>
<ForeName>Sandro F</ForeName>
<Initials>SF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hayden</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ertl</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>12</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Lab Chip</MedlineTA>
<NlmUniqueID>101128948</NlmUniqueID>
<ISSNLinking>1473-0189</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Dimethylpolysiloxanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Tin Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>63148-62-9</RegistryNumber>
<NameOfSubstance>baysilon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>71243-84-0</RegistryNumber>
<NameOfSubstance>indium tin oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Cell Adhesion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Cell Culture Techniques</DescriptorName>
<QualifierName MajorTopicYN="Y">standards</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Cell Survival</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Dielectric Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Dimethylpolysiloxanes</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Electrodes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Human Umbilical Vein Endothelial Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Jurkat Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Microfluidic Analytical Techniques</DescriptorName>
<QualifierName MajorTopicYN="N">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N">methods</QualifierName>
<QualifierName MajorTopicYN="Y">standards</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nanotechnology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Scattering, Radiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Tin Compounds</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2013</Year>
<Month>2</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1039/c2lc40965h</ArticleId>
<ArticleId IdType="pubmed">23254868</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000380 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000380 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23254868
   |texte=   Standardization of microfluidic cell cultures using integrated organic photodiodes and electrode arrays.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23254868" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024